Question
105
给定一棵树的前序遍历 preorder 与中序遍历 inorder。请构造二叉树并返回其根节点。
示例 1:
Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7] Output: [3,9,20,null,null,15,7]
示例 2:
Input: preorder = [-1], inorder = [-1] Output: [-1]
提示:
1 <= preorder.length <= 3000 inorder.length == preorder.length -3000 <= preorder[i], inorder[i] <= 3000 preorder 和 inorder 均无重复元素 inorder 均出现在 preorder preorder 保证为二叉树的前序遍历序列 inorder 保证为二叉树的中序遍历序列
Related Topics 树 数组 哈希表 分治 二叉树 👍 1258 👎 0
Answer
//105 ac
//Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
TreeNode* builder(vector<int>& preorder, int pre_start, int pre_end, vector<int>& inorder, int in_start, int in_end) {
if (pre_start == pre_end) {
return nullptr;
}
TreeNode *root = new TreeNode(preorder[pre_start]);
int in_root;
for (int i = in_start; i < in_end; ++i) {
if (inorder[i] == root->val) {
printf("root->val[%d]\n", root->val);
in_root = i;
break;
}
}
int left_len = in_root - in_start;
root->left = builder(preorder, pre_start + 1, pre_start + left_len + 1, inorder, in_start, in_root);
root->right = builder(preorder, pre_start + left_len + 1, pre_end, inorder, in_root + 1, in_end);
return root;
}
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
return builder(preorder, 0, preorder.size(), inorder, 0, inorder.size());
}
//105 ac
//Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
TreeNode* builder_105(vector<int>& preorder, int pre_start, int pre_end, vector<int>& inorder, int in_start, int in_end) {
// if (pre_end < pre_start) {
// return nullptr;
// }
if (in_end < in_start) {
//递归边界可以是in可以是pre
return nullptr;
}
printf("pre_start[%d], pre_end[%d], in_start[%d], in_end[%d]\n", pre_start, pre_end, in_start, in_end);
TreeNode *root = new TreeNode(preorder[pre_start]);//pre的第一个结点作为root,3
int in_root;
for (int i = in_start; i <= in_end; ++i) {
if (inorder[i] == root->val) {
printf("root->val[%d]\n", root->val);
in_root = i;//在in数组中找到值为root的结点
break;
}
}
int left_len = in_root - in_start;//1=1-0
//注意边界,左子树[in_start, in_root-1], [pre_start+1, pre_start+left_len];
//右子树[in_root+1, in_end], [pre_start+left_len+1, pre_end];
//对于in数组,选择左右子树时候,左子树是in_root-1,右子树是in_root+1
//对于pre数组,选择左右子树的时候,左子树需要pre_start+1(pre_start是根结点), 右子树还是pre_end
root->left = builder_105(preorder, pre_start + 1, pre_start + left_len, inorder, in_start, in_root - 1);
root->right = builder_105(preorder, pre_start + left_len + 1, pre_end, inorder, in_root + 1, in_end);
return root;
}
TreeNode* buildTree_105(vector<int>& preorder, vector<int>& inorder) {
return builder(preorder, 0, preorder.size()-1, inorder, 0, inorder.size()-1);
}
Question
106
根据一棵树的中序遍历与后序遍历构造二叉树。
注意: 你可以假设树中没有重复的元素。
例如,给出
中序遍历 inorder = [9,3,15,20,7] 后序遍历 postorder = [9,15,7,20,3]
返回如下的二叉树:
3 /
9 20 /
15 7Related Topics 树 数组 哈希表 分治 二叉树 👍 598 👎 0
Answer
//106 ac
//inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
TreeNode* builder_106(vector<int>& inorder, int in_start, int in_end, vector<int>& postorder, int post_start, int post_end) {
if (in_end < in_start) {
return nullptr;
}
TreeNode *root = new TreeNode(postorder[post_end]);//post的最后一个结点作为root
int in_root;
for (int i = in_start; i <= in_end; ++i) {
if (inorder[i] == root->val) {
printf("root=[%d], in_root=[%d]\n", root->val, i);
in_root = i;//在in数组中找到值为root的结点
break;
}
}
int left_len = in_root - in_start;//1
//注意边界,左子树[in_start, in_root-1], [post_start, post_start+left_len-1];
//右子树[in_root+1, in_end], [post_start+left_len, post_end-1];
//对于in数组,选择左右子树时候,左子树是in_root-1,右子树是in_root+1
//对于pre数组,选择左右子树的时候,左子树需要post_start, 右子树是post_end-1(post_end是根结点)
root->left = builder_106(inorder, in_start, in_root - 1, postorder, post_start, post_start + left_len - 1);
root->right = builder_106(inorder, in_root + 1, in_end, postorder, post_start + left_len, post_end - 1);
return root;
}
TreeNode* buildTree_106(vector<int>& inorder, vector<int>& postorder) {
return builder_106(inorder, 0, inorder.size()-1, postorder, 0, postorder.size()-1);
}